Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(32): 11149-11165, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37542435

RESUMO

In the context of functional and hierarchical materials, electrode reactions coupled with one or more chemical reactions constitute the most powerful bottom-up process for the electrosynthesis of film components and their electrodeposition, enabling the localized functionalization of conductive surfaces using an electrical stimulus. In analogy with developmental biological processes, our group introduced the concept of morphogen-driven film buildup. In this approach, the gradient of a diffusing reactive molecule or ion (called a morphogen) is controlled by an electrical stimulus to locally induce a chemical process (solubility change, hydrolysis, complexation, and covalent reaction) that induces a film assembly. One of the prominent advantages of this technique is the conformal nature of the deposits toward the electrode. This Feature Article presents the contributions made by our group and other researchers to develop strategies for the assembly of different polymer and nanoparticle/polymer hybrid films by using electrochemically generated reagents and/or catalysts. The main electrochemical-chemical approaches for conformal films are described in the case where (i) the products are noncovalent aggregates that spontaneously precipitate on the electrode (film electrodeposition) or (ii) new chemical compounds are generated, which do not necessarily spontaneously precipitate and enable the formation of covalent or noncovalent films (film electrosynthesis). The applications of those electrogenerated films will be described with a focus on charge storage/transport, (bio)sensing, and stimuli-responsive cargo delivery systems.

2.
J Chromatogr A ; 1692: 463837, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36804799

RESUMO

Protein adsorption on the inner wall of the fused silica capillary wall is an important concern for capillary electrophoresis (CE) analysis since it is mainly responsible for separation efficiency reduction. Successive Multiple Ionic-polymer Layers (SMIL) are used as capillary coatings to limit protein adsorption, but even low residual adsorption strongly impacts the separation efficiency, especially at high separation voltages. In this work, the influence of the chemical nature and the PEGylation of the polyelectrolyte deposited in the last layer of the SMIL coating was investigated on the separation performances of a mixture of four model intact proteins (myoglobin (Myo), trypsin inhibitor (TI), ribonuclease a (RNAse A) and lysozyme (Lyz)). Poly(allylamine hydrochloride) (PAH), polyethyleneimine (PEI), ε-poly(L-lysine) (εPLL) and α-poly(L-lysine) (αPLL) were compared before and after chemical modification with polyethyleneglycol (PEG) of different chain lengths. The experimental results obtained by performing electrophoretic separations at different separation voltages allowed determining the residual retention factor of the proteins onto the capillary wall via the determination of the plate height at different solute velocities and demonstrated a strong impact of the polycationic last layer on the electroosmotic mobility, the separation efficiency and the overall resolution. Properties of SMIL coatings were also characterized by quartz microbalance and atomic force microscopy, demonstrating a glassy structure of the films.


Assuntos
Polilisina , Polímeros , Polieletrólitos/química , Polímeros/química , Íons , Eletroforese Capilar/métodos , Mioglobina
3.
Molecules ; 27(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35566207

RESUMO

Sensitive and rapid monitoring of cholesterol levels in the human body are highly desirable as they are directly related to the diagnosis of cardiovascular diseases. By using the nanoarchitectonic approach, a novel fluorescent conjugated oligofluorene (OFP-CD) functionalized with ß-cyclodextrin (ß-CD) was assembled for "Turn-On" fluorescence sensing of cholesterol. The appended ß-CD units in OFP-CD enabled the forming of host-guest complexes with dabsyl chloride moieties in water, resulting in fluorescence quenching of the oligofluorene through intermolecular energy transfer. In the presence of cholesterol molecules, a more favorable host-guest complex with stoichiometry 1 cholesterol: 2 ß-CD units was formed, replacing dabsyl chloride in ß-CD's cavities. This process resulted in fluorescence recovery of OFP-CD, owing to disruption of energy transfer. The potential of this nanoarchitectonic system for "Turn-On" sensing of cholesterol was extensively studied by fluorescence spectroscopy. The high selectivity of the sensor for cholesterol was demonstrated using biologically relevant interfering compounds, such as carbohydrates, amino acids, metal ions, and anions. The detection limit (LOD value) was as low as 68 nM, affirming the high sensitivity of the current system.


Assuntos
Cloretos , Colesterol , Colesterol/química , Transferência de Energia , Fluorescência , Humanos , Espectrometria de Fluorescência
4.
Molecules ; 27(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35630741

RESUMO

The ionization degree, charge density, and conformation of weak polyelectrolytes can be adjusted through adjusting the pH and ionic strength stimuli. Such polymers thus offer a range of reversible interactions, including electrostatic complexation, H-bonding, and hydrophobic interactions, which position weak polyelectrolytes as key nano-units for the design of dynamic systems with precise structures, compositions, and responses to stimuli. The purpose of this review article is to discuss recent examples of nanoarchitectonic systems and applications that use weak polyelectrolytes as smart components. Surface platforms (electrodeposited films, brushes), multilayers (coatings and capsules), processed polyelectrolyte complexes (gels and membranes), and pharmaceutical vectors from both synthetic or natural-type weak polyelectrolytes are discussed. Finally, the increasing significance of block copolymers with weak polyion blocks is discussed with respect to the design of nanovectors by micellization and film/membrane nanopatterning via phase separation.


Assuntos
Eletrólitos , Polímeros , Eletrólitos/química , Concentração de Íons de Hidrogênio , Polieletrólitos/química , Polímeros/química , Propriedades de Superfície
5.
ACS Appl Mater Interfaces ; 12(20): 23410-23416, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32374582

RESUMO

A surface-enhanced Raman spectroscopy sensing template consisting of gold-covered nanopillars is developed. The plasmonic slab consists of a perforated gold film at the base of the nanopillars and a Babinet complementary dot array on top of the pillars. The nanopillars were fabricated by the incorporation of an iron salt precursor into a self-assembled block copolymer thin film and subsequent reactive ion etching. The preparation is easy, scalable, and cost-effective. We report on the increase in surface-enhanced Raman scattering efficiency for smaller pillar heights and stronger coupling between the dot array and perforated gold film with average enhancement factors as high as 107. In addition, the block copolymer-derived templates show an excellent relative standard deviation of 8% in the measurement of the Raman intensity. Finite difference time domain simulations were performed to investigate the nature of the electromagnetic near-field enhancement and to identify plasmonic hot spots.

6.
Phys Chem Chem Phys ; 22(15): 7942-7951, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32232288

RESUMO

A pharmacophoric motif decorated with supramolecular functionalities (TZT) was designed for potential interaction with biological targets. Main insights of this work include the correlation of supra functionalities of TZT with its binding ability to proteins leading to the modulation of their structure and bioactivity as a promising perspective in the field of cellular protection from oxidative stress. To investigate the role of TZT in obliterating oxidative stress at a molecular level, its binding propensity with bovine serum albumin (BSA) and bovine liver catalase (BLC) was characterized using various biophysical methods. The binding constants of TZT with BSA (Kb = 2.09 × 105 M-1) and BLC (Kb = 2.349 × 105 M-1) indicate its considerable interaction with these proteins. TZT efficiently triggers favourable structural changes in BLC, thereby enhancing its enzyme activity in a dose dependent manner. The enzyme kinetics parameters of TZT binding to BLC were quantified using the Michaelis-Menten model. Both in silico and experimental results suggest that an increased substrate availability could be the reason for enhanced BLC activity. Furthermore, physiological relevance of this interaction was demonstrated by investigating the ability of TZT to attenuate oxidative stress. Treatment with TZT was found to mitigate the inhibition of A549 cell proliferation in the presence of high concentrations of vitamin C. This finding was confirmed at a molecular level by PARP cleavage status, demonstrating that TZT inhibits apoptotic cell death induced by oxidative stress.


Assuntos
Catalase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tiazolidinas/farmacologia , Células A549 , Animais , Antioxidantes/farmacologia , Bovinos , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos
7.
R Soc Open Sci ; 6(3): 181647, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31032021

RESUMO

Transparent optical thin films have recently attracted a growing interest for functional window applications. In this study, highly visible transparent nanocomposite films with ultraviolet (UV)-near-infrared (NIR)-blocking capabilities are reported. Such films, composed of Mo6 and Nb6 octahedral metal atom clusters (MC) and polymethylmethacrylate polymer (PMMA), were prepared by electrophoretic deposition on indium tin oxide-coated glass (ITO glass). PMMA was found to improve both the chemical and physical stability of Mo6 and Nb6 MCs, resulting in a relatively homogeneous distribution of the clusters within the PMMA matrix, as seen by microstructural observations. The optical absorption spectrum of these transparent MC@polymer nanocomposite films was marked by contributions from their Mo6 and Nb6-based clusters (absorption in the UV range) and from the ITO layer on silica glass (absorption in the NIR range). Mo6@PMMA nanocomposite films also exhibited excellent photoluminescence properties, which were preserved even after exposure to 50°C at a relative humidity of 70% for one month. These films cumulate high transparency in the visible range with remarkable UV-NIR blocking properties and represent interesting candidates for functional glass application.

8.
Phys Chem Chem Phys ; 20(4): 2761-2770, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29322126

RESUMO

Hollow nanocapsules (named Hybridosomes®) possessing a polymer/nanoparticle shell were used to covalently construct hybrid films in a one-pot fashion. The alkyne bearing organic/inorganic Hybridosomes® were reticulated with azide bearing homobifunctional polyethyleneglycol (PEG) linkers, by using an electro-click reaction on F-SnO2 (FTO) electrodes. The coatings were obtained by promoting the Cu(i)-catalyzed click reaction between alkyne and azide moieties in the vicinity of the electrode by the electrochemical generation of Cu(i) ions. The physicochemical properties of the covalently reticulated hybrid films obtained were studied by SEM, AFM, UV-vis and fluorescence spectroscopy. The one-pot covalent click reaction between the nanocapsules and the PEG linkers in the film did not affect the desirable features of the Hybridosomes® i.e. their hollow nanostructure their chemical versatility and their pH-sensitivity. Consequently, both the composition and the cargo-loading of the Hybridosomes® films could be tuned, demonstrating the versatility of these hybrid coatings. For example, the Hybridosome® films were used to encapsulate and release a bodipy fluorescent probe in response to either a pH drop or the application of an oxidative +1 V potential (vs. Ag/AgCl) at the substrate. By advancing the field of electro-synthesized films a step further toward the design of complex physicochemical interfaces, these results open perspectives for multifunctional coatings where chemical versatility, controllable stability and a hollow nanostructure are required.

9.
Small ; 11(36): 4638-42, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26097151

RESUMO

Integration of nanoparticles (NPs) into nanodevices is a challenge for enhanced sensor development. Using NPs as building blocks, a bottom-up approach based on one-pot morphogen-driven electroclick chemistry is reported to self-construct dense and robust conductive Fe3O4 NP films. Deposited covalent NP assemblies establish an electrical connection between two gold electrodes separated by a 100 nm-wide nanotrench.

10.
Langmuir ; 30(36): 10818-25, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25149436

RESUMO

We created novel nonphospholipid photosensitive liposomes from a mixture of a monoacylated azobenzene amphiphile (AzoC10N(+)) and cholesterol sulfate (Schol). This system belongs to the family of sterol-enriched nonphospholipid liposomes that were shown to form stable large unilamellar vesicles (LUVs) with enhanced impermeability. Fluid bilayers were successfully prepared from AzoC10N(+)/Schol (25/75 molar ratio) mixtures, and LUVs could be derived at room temperature using standard extrusion methods. The isomerization process of the bilayer-inserted AzoC10N(+) was characterized. Leakage from these liposomes could be induced by the photoconversion of AzoC10N(+) from its trans form to its cis form. This photocontrolled release from fluid liposomes contrasts with the case of phospholipid-based azo-containing liposomes, which are generally required to be in the gel phase to be photosensitive. It is proposed that the very high degree of conformational order of the monoalkylated amphiphile and the tight packing of the hydrophobic core of the AzoC10N(+)/Schol liposomes make them responsive to the presence of the bulky cis azo isomer. Interestingly, the liposome impermeability could be fully restored by the photoisomerization of the cis form back to the trans form, providing a sharp on-and-off control of payload release. In addition, these nonphospholipid liposomes display a very limited passive release. Therefore, it is shown that AzoC10N(+)/Schol LUVs can be used as nanocontainers, whose content can be released by light in a controlled and switchable manner.


Assuntos
Lipossomos/química , Compostos Azo/química , Ésteres do Colesterol/química , Estrutura Molecular , Processos Fotoquímicos
11.
ACS Nano ; 8(5): 5240-8, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24738664

RESUMO

Simple preparation methods of chemically versatile and highly functionalizable surfaces remain rare and present a challenging research objective. Here, we demonstrate a simultaneous electropolymerization and electro-click functionalization process (SEEC) for one-pot self-construction of aniline- and naphthalene-based functional polymer films where both polymerization and click functionalization are triggered by applying electrochemical stimuli. Cyclic voltammetry (CV) can be applied for the simultaneous oxidation of 4-azidoaniline and the reduction of Cu(II) ions, resulting in polymerization of the former, and the Cu(I)-catalyzed alkyne/azide cycloaddition ("click" chemistry). Properties of the films obtained can be tuned by varying their morphology, their chemically "clicked" content, or by postconstruction functionalization. To demonstrate this, the CV scan rates, component monomers, and "clicked" molecules were varied. Covalent postconstruction immobilization of horseradish peroxidase was also performed. Consequently, pseudocapacitance and enzyme activity were affected. SEEC provides surface scientists an easy access to a wide range of functionalization possibilities in several fields including sensors, fuel cells, photovoltaics, and biomaterials.


Assuntos
Eletroquímica , Nanotecnologia/métodos , Compostos de Anilina/química , Compostos Azo/química , Materiais Biocompatíveis/química , Catálise , Cobre/química , Peroxidase do Rábano Silvestre/química , Íons , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Oxigênio/química , Peroxidases/química , Polímeros/química , Espectrofotometria Ultravioleta , Propriedades de Superfície , Raios Ultravioleta , Raios X
12.
Langmuir ; 29(34): 10776-84, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23895332

RESUMO

The design of films using a one-pot process has recently attracted increasing interest in the field of polymer thin film formation. Herein we describe the preparation of one-pot supramolecular polyrotaxane (PRX) films using the morphogen-driven self-construction process. This one-pot buildup strategy where the film growth is triggered by the electrochemical formation and diffusion of a catalyst in close vicinity of the substrate has recently been introduced by our group. A one-pot mixture was used that contained (i) poly(acrylic acid) (PAA) functionalized by azide groups grafted on the polymer chain through oligo(ethylene glycol) (EG) arms, leading to PAA-EG13-N3, (ii) cyclodextrins (α and ß CD), as macrocycles that can be threaded along EG arms, (iii) alkyne-functionalized stoppers (ferrocene or adamantane), to cap the PRX assembly by click chemistry, and (iv) copper sulfate. The one-pot mixture solution was brought into contact with a gold electrode. Cu(I), the morphogen, was generated electrochemically from Cu(II) at the electrode/one-pot solution interface. This electrotriggered click reaction leads to the capping of polypseudorotaxane yielding to PRXs. The PRXs can self-assemble through lateral supramolecular interactions to form aggregates and ensure the cohesion of the film. The film buildup was investigated using different types of CD and alkyne functionalized stoppers. Supramolecular PRX aggregates were characterized by X-ray diffraction measurements. The film topographies were imaged by atomic force microscopy. The influence of the concentration in CD and the presence of a competitor were studied as well. The stability of the resulting film was tested in contact with 8 M urea and during the electrochemical oxidation of ferrocene.


Assuntos
Ciclodextrinas/química , Eletroquímica/métodos , Poloxâmero/química , Rotaxanos/química , Química Click , Eletrodos , Microscopia de Força Atômica , Estrutura Molecular
14.
Langmuir ; 26(15): 12769-76, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20666419

RESUMO

It has been shown that mixtures of palmitic acid (PA) and cholesterol (Chol) or cholesterol sulfate (Schol) can form fluid bilayers. These bilayers could be extruded using standard extrusion techniques to obtain nonphospholipid large unilamellar vesicles (LUVs). These LUVs displayed a very limited passive permeability, associated with their high sterol content (typically 70 mol %). In addition, they showed a pH-dependent behavior dictated by the electrostatic interfacial interactions, which are drastically modulated by the protonation state of PA. Interestingly, the LUVs prepared with cholesterol were stable at high pH and the release of the content could be triggered by a pH decrease (i.e., the protonation of PA). In contrast, the LUVs including Schol were stable at low pH and a pH increase (leading to the deprotonation of PA) would induce the release. In the present study, we demonstrate that the pH triggering the release in these two systems can be dictated in a predictable manner by selecting a fatty acid with an appropriate pK(a). The pK(a) of the fatty acids was modulated by the presence of an electro-withdrawing group (hydroxyl or fluoro) in the alpha position of the carboxylic function. The fatty acid protonation state is shown to be a critical factor for the modulation of the liposome permeability. The described systems display a remarkable versatility regarding the pH-sensitivity because the nature of the sterol controls the overall pH stability of the LUVs while the fatty acid pK(a) fine-tunes the pH-induced release. Therefore, it is possible to rationally design LUVs with controlled release at a specific pH; this original aspect is beneficial to the use of LUVs for encapsulation, vectorization, and controlled release of active agents.


Assuntos
Ácido Palmítico/química , Lipossomas Unilamelares/química , Colesterol/química , Ésteres do Colesterol/química , Concentração de Íons de Hidrogênio , Modelos Químicos
15.
Langmuir ; 26(4): 2816-24, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-19950954

RESUMO

We report the covalent layer-by-layer construction of polyelectrolyte multilayer (PEM) films by using an efficient electrochemically triggered Sharpless click reaction. The click reaction is catalyzed by Cu(I) which is generated in situ from Cu(II) (originating from the dissolution of CuSO(4)) at the electrode constituting the substrate of the film. The film buildup can be controlled by the application of a mild potential inducing the reduction of Cu(II) to Cu(I) in the absence of any reducing agent or any ligand. The experiments were carried out in an electrochemical quartz crystal microbalance cell which allows both to apply a controlled potential on a gold electrode and to follow the mass deposited on the electrode through the quartz crystal microbalance. Poly(acrylic acid) (PAA) modified with either alkyne (PAA(Alk)) or azide (PAA(Az)) functions grafted onto the PAA backbone through ethylene glycol arms were used to build the PEM films. Construction takes place on gold electrodes whose potentials are more negative than a critical value, which lies between -70 and -150 mV vs Ag/AgCl (KCl sat.) reference electrode. The film thickness increment per bilayer appears independent of the applied voltage as long as it is more negative than the critical potential, but it depends upon Cu(II) and polyelectrolyte concentrations in solution and upon the reduction time of Cu(II) during each deposition step. An increase of any of these latter parameters leads to an increase of the mass deposited per layer. For given buildup conditions, the construction levels off after a given number of deposition steps which increases with the Cu(II) concentration and/or the Cu(II) reduction time. A model based on the diffusion of Cu(II) and Cu(I) ions through the film and the dynamics of the polyelectrolyte anchoring on the film, during the reduction period of Cu(II), is proposed to explain the major buildup features.


Assuntos
Membranas Artificiais , Polímeros/química , Catálise , Cobre/química , Eletroquímica , Eletrodos , Eletrólitos/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...